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ABSTRACT

Structured illumination(SI) has a wide range of applications in computational imaging in the form of encoding
and recomposing image signals. In this work, we explore the applications and advantages of deep-learning tech-
niques in SI imaging problems. (1) In single-pixel imaging(SPI), where SI encodes the target into a sequence
of bucket signals, the recovery suffers from loss of imaging quality due to various noises. We propose an unsu-
pervised deep-learning (UnDL) based anti-noise approach, which outperforms conventional single-pixel imaging
methods considerably in reconstructing targets against noise. (2) In blind ghost imaging, we propose two hybrid
quantum-classical machine learning algorithms and a physical-inspired patch strategy, leveraging quantum ma-
chine learning to restore high-quality images where classical machine learning fails. (3) In structured illumination
microscopy(SIM), the illumination encodes high-frequency details into the passband of the objective. Existing
optimization-based decoding algorithms are sensitive to noise, while learning-based methods have faithfulness
issues. We propose a physics-informed deep learning approach, where the re-parameterized network outperforms
its counterparts in terms of noise robustness and recovery faithfulness. In general, the proposed deep-learning-
based algorithms solve the inverse SI decoding problem by leveraging inherent priors of neural networks. The
proposed framework and idea have the potential to be applied in other scenarios with SI and other computational
imaging problems.
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1. INTRODUCTION

Structured illumination(SI) is widely applied in computational imaging scenarios, including single-pixel imag-
ing(SPI),1 fourier ptychography(FP),2 structured illumination microscopy(SIM).3 SI generally acts as a set of
known modulation functions, which encodes the target into a sequence of measurements under some specific
physical model. To recover the target profile, the measurements go through an explicit decoding algorithm. The
decoding algorithms need to be carefully designed since the inverse problem is often ill-posed or under-determined.

Deep learning and neural networks4,5 are a powerful tool to solve such inverse problems. Benefited by the
hardware revolution and large-scale dataset collection, deep learning has witnessed rapid development in the
past few years and has been applied in various computational imaging problems(e.g. phase retrieval,6 scatter
imaging,7 computational ghost imaging,1 super resolution,8 low photon imaging9 and pattern analysis10). The
success of deep learning is largely attributed to the ability to learn from large-scale datasets by supervised
training, or the inherent priors of neural networks.11

In this work, we explore the applications and advantages of deep learning techniques in computational imag-
ing problems with SI. (1) Single-Pixel Imaging(SPI). SI encodes the target into a sequence of 1-D bucket
signals, from which the 2D object needs to be recovered. (2) Blind Ghost Imaging. Different from classic SPI,
the object image is recovered without any knowledge of the modulated speckles. (3) Structured Illumination
Microscopy(SIM). SI encodes high-frequency details into the passband of the objective. The high resolution
image needs to be recovered from original and cosine illumination patterns. Our simulations and experiments
demonstrate that firstly, deep neural networks are advantageous in recovering image signals from measurements
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produced by SI. The deep networks are integrated by specific physical models, either in a supervised or unsu-
pervised manner. Secondly, benefited by the strong feature representation ability, quantum networks and the
hybrid ones are powerful in more difficult problems like blind ghost imaging. The proposed framework and idea
have the potential to be applied in other SI scenarios or more general imaging problems.

2. SINGLE-PIXEL IMAGING
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Figure 1. A single-beam single-pixel imaging system.

Physical Model. Fig 1 illustrates a simple single-pixel imaging system. The digital DMD is illuminated
by a laser beam and modulates the light field, which propagates towards and interact with the object. Then
the transmitted(or reflected) light is collected by a single-pixel detector. A set of patterns Pt(t = 1, . . . ,M) are
continuously loaded onto the DMD to produce different structured illumination, which then results in a sequence
of 1-D measurements B = {Bt}Mt=1. Formally

Bt =
∑
r

Pt(r) · S(r)dr (1)

Then the inverse problem can be expressed as

Ŝ = argmin
S

M∑
t=1

∥Pt · S −Bt∥2 (2)

When sampling number M is small, the optimization is highly under-determined and traditional methods fail.

Method. The proposed UnDL framework is illustrated in Fig. 2, which consists of an imaging module and
an enhancing module. The imaging module and enhancing module are trained in a two-stage manner. After
training, the inference can be finished in one single forward pass. (1) Imaging module training. We add noise
with zero-mean to clear images and simulate 1-D measurements B with the sampling rate randomly chosen from
5% and 10%. B goes through DGI12 and obtain a reference image S̃. Then the imaging module is trained with
paired data {(B, S̃)} and standard MSE loss. (2) Enhancing module training. When the training of imaging
module finishes, the enhancing module is trained in a self-supervised way. Specifically, we randomly sample
sub-regions from the outputs of imaging module, mask out one pixel in the sub-region, and use its neighboring
pixels to predict its value. The idea is similar to MAE.13 The image quality from the imaging module is largely
improved by the enhancing module. Inference. After training, UnDL is completely end-to-end, taking real
measurements as input and producing reconstructions.

Results. We report the simulation and experimental results in Fig. 3. In subplot (a), we compare the
proposed UnDL framework against DGI12 and CSTV.14 The PSNR is evaluated across MNIST dataset with the
sample rate 5%, 10%, 20% respectively. It can be seen that the proposed approach consistently outperform the
others. This is also verified in subplot (b), where the digit 5 recovered by ours approach is more clear and less
affected by under-sampling and noise. In subplot (c), we experimentally demonstrate the superiority using a
butterfly wing. The recovery and its line profile show that UnDL can produce more high-quality reconstructions.
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Figure 2. The proposed UnDL framework for single-pixel imaging.
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Figure 3. The simulation and experimental results of UnDL for single-pixel imaging.

3. BLIND GHOST IMAGING

Physical Model. The physical process and forward model is the same as Sec. 2 and Fig. 1, except that in blind
ghost imaging, we need to recover the image without any priori or knowledge of the illumination patterns.
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Figure 4. The proposed hybrid quantum-classical network for blind ghost imaging.

Method. We propose a hybrid quantum-classical neural network, which has a more powerful representation
ability than pure classic ones. As illustrated in Fig. 4, the bucket signals are first divided into several segments
and fed into parallel quantum encoders. A quantum encoder consists of several variational quantum layers, which



progressively process quantum features in Hilbert space. After that, each qubit is measured locally to estimate
the predefined observable O = ⊗n

i=1Zi as the output. Outputs from parallel branches are then concatenated into
a single vector, which is post-processed by a classic convolutional neural network(CNN). The CNN consists of
interleaved upsampling layers and convolutional layers to recover original image size.

The proposed quantum-classical neural network fθ(·) is trained in a supervised manner. Specifically, given
a target image S, 1-D measurements B are simulated according to Eq. 1. Then the quantum-classical neural
network is trained with standard MSE loss

θ∗ = argmin
θ

∑
n

∥fθ(Bn)− Sn∥2 (3)

Results. We compare the proposed quantum-classical neural network with a pure classical one and report
the results in Fig. 5. With the same sampling, the hybrid quantum-classical network produces more high-quality
reconstructions. It can be seen that the pure classical network almost fails at all sampling levels, which originates
from the convergence issue under blind ghost imaging. In contrast, the hybrid quantum-classical network recovers
the rough shape of the airplane, and the reconstruction quality improves as the sampling level increases. The
results have proved the advantages of quantum machine learning in feature processing and encoding.
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Figure 5. Simulation results of the proposed quantum-classical neural network for blind ghost imaging.

4. STRUCTURED ILLUMINATION MICROSCOPY

Physical Model. In structured illumination microscopy(SIM, Fig. 6(a)), the object is illuminated by cosine
patterns Pd,φ = 1+ cd ·cos(2πpd ·r+φd). Cosine patterns shift the high-frequency details of the object S(r) into
the passband of the objective (h(r)). By varying the orientation and phase of the patterns, a set of SIM images
I = {It}Mt=1 is produced. Formally we have the forward model in Eq. 4 and the inverse model in Eq. 5. Classic
numeric-based3,15 or optimization-based16 methods could produce artifacts, especially when the illumination
vector is not accurately estimated, or when the signal-to-noise is low.

It(r) = (S(r) · Pt(r))⊗ h(r) (4)

Ŝ = argmin
S

∑
t

∥(Pt · S)⊗ h− It∥2 (5)

Method. To achieve robust and faithful super-resolution recovery profiles, we propose a physics-informed
neural network with a specially designed architecture and optimization objective(Fig. 6(b)(c)). (1) The physics-
informed neural network fθ(·) consists of a group-wise feature extraction module fθg (·) and a fusion module
fθh(·). Inspired by the fact that raw images in SIM come in groups(determined by pattern orientations), the
group-wise feature extraction module consists of several group convolutional blocks to progressively extract
features. Then the fusion module aggregates the features and reconstructs the super-resolution image. (2) To
avoid the recovery being over-smooth, we propose a fourier-space objective function, constraining the predicted
frames and captured frames in the fourier space.

Lfourier =
∑
t

∥F(Ît)−F(It)∥2 (6)
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Figure 6. (a) A LED and DMD based SIM system. (b) The proposed physics-informed network and training method for
SIM. (c) The detailed architecture of the neural network.

Formally, the network takes raw images as input and outputs the high-resolution estimation Ŝ = fθ(I).
The high-resolution estimation goes through the forward model Eq. 4, producing the low-resolution estimations
Ît = (Pt · Ŝ) ⊗ h. Fourier-space consistency between these estimations and raw images is derived according to
Eq. 6 to update the network parameters until convergence.
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Figure 7. Simulation and experimental results of the proposed physics-informed neural network for SIM.

Results. We first report simulation results under several noisy scenarios in the upper part of Fig. 7. Noisy



scenarios include gaussian noise, inaccurate parameter estimation and lens aberration. The proposed physics-
informed neural network is more robust and consistently outperforms the baseline.

We also verify the proposed approach on open-source experimental database17 and report in the lower part
of Fig. 7. More fine-grained details can be observed from the comparison against widefield image.

5. CONCLUSION

In this work, we explore the applications and advantages of deep learning in computational imaging problems
with structured illumination. We have focused on three representative scenarios: single-pixel imaging, blind
ghost imaging and structured illumination microscopy. Simulations and experiments have demonstrated that, by
integrating with specific physical models, the deep neural networks are advantageous in recovering image signals
encoded by SI. We have also demonstrated the power of quantum networks in some difficult SI problems like
blind ghost imaging.
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