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ABSTRACT
Occlusion is a significant problem in 3D human pose estimation
from the 2D counterpart. On one hand, without explicit annota-
tion, the 3D skeleton is hard to be accurately estimated from the
occluded 2D pose. On the other hand, one occluded 2D pose might
correspond to multiple 3D skeletons with low confidence parts. To
address these issues, we decouple the 3D representation feature
into view-invariant part termed occlusion-aware feature and view-
dependent part termed rotation feature to facilitate subsequent
optimization of the former. Then we propose an occlusion-aware
contrastive representation based scheme (OCR-Pose) consisting
of Topology Invariant Contrastive Learning module (TiCLR) and
View Equivariant Contrastive Learning module (VeCLR). Specif-
ically, TiCLR drives invariance to topology transformation, i.e.,
bridging the gap between an occluded 2D pose and the unoccluded
one. While VeCLR encourages equivariance to view transforma-
tion, i.e., capturing the geometric similarity of the 3D skeleton in
two views. Both modules optimize occlusion-aware constrastive
representation with pose filling and lifting networks via an iter-
ative training strategy in an end-to-end manner. OCR-Pose not
only achieves superior performance against state-of-the-art un-
supervised methods on unoccluded benchmarks, but also obtains
significant improvements when occlusion is involved. Our project
is available at https://sites.google.com/view/ocr-pose.
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1 INTRODUCTION
Estimating 3D human poses frommonocular images is an important
step in various applications, such as robotics, Human-Computer
Interaction, Virtual Reality, etc. Generally, methods under this task
detect individuals in each image, estimate the 2D pose within each
person’s bounding box via off-the-shelf detectors, and finally con-
vert the 2D pose to a 3D pose. Previous existing unsupervised
methods are designed for the scenarios where human bodies are
well captured without occlusion. However, occlusions (i.e., self-
occlusion and object-occlusion) are very common in practical ap-
plications. And it is worth mentioning that occluded 3D human
pose estimation is quite challenging, especially in an unsupervised
setting. In this paper, we are interested in the occlusion problem
for unsupervised monocular 3D human pose estimation.

The challenges of the occlusion problem in the task are two-
fold: (a.) 3D skeleton is difficult to be accurately estimated from
an occluded 2D pose lacking reliable 2D joints (see Fig. 1). We ex-
perimentally find that the performance of unsupervised 3D pose
estimation is prone to drift seriously with occluded 2D poses. Pre-
vious methods [1, 17, 38] commonly exploit topology priors (e.g.,
kinematics priors, adversarial priors, geometric constraints, etc.) to
alleviate the corresponding ambiguity. However, only relying on
these topology priors is often ineffective under the occlusion setting.
(b.) Multi-view data [5, 11, 15] can effectively address such kind of
ambiguity. However, multi-view images require dedicated multi-
camera equipment, which is often high-cost and unavailable. Yu et
al. [38] utilize the generated pseudo view to construct multi-view
consistency constraint, which hardly generalizes to the occlusion
setting. Although Fig. 1 illustrates that either object-occluded or
self-occluded part may be visible in another view, it remains chal-
lenging to exploit multi-view information directly.

To solve the above challenges, we decouple the representation
feature generated by unsupervised pose lifting baseline [38] into the
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Figure 1: Illustration of occlusion problem (i.e., object-
occlusion and self-occlusion in two views) for 3D pose esti-
mation. Notably, either object-occluded part (e.g., left leg in
the top yellow circle) or self-occluded part (e.g., left hand in
the bottom yellow circle) is visible in another view.

view-invariant part termed occlusion-aware feature and the view-
dependent part termed rotation feature to facilitate the subsequent
optimization of the former feature. The decoupled semantic fea-
ture is experimentally proved to promote the following contrastive
learning. Then, as is shown in Fig. 3, we propose an occlusion-
aware contrastive learning-based scheme (OCR-Pose) consisting of:
1) Topology Invariant Contrastive Learning module (TiCLR) to drive
invariance to topology transformation, i.e., bridging the gap be-
tween occluded 2D pose and unoccluded one. In TiCLR, the positive
sample is the corresponding unoccluded 2D pose, whereas the neg-
ative samples refer to other occluded 2D ones. 2) View Equivariant
Contrastive learning module (VeCLR), to encourage equivariance
to view transformation, i.e., capturing geometric similarity of the
3D skeleton in two views. In VeCLR, the positive sample is the
projected 2D pose with occlusion, which can be utilized to generate
3D skeleton in another pseudo view, while the negative samples
correspond to other 3D skeletons with large differences filtered by
attention mechanism. Furthermore, TiCLR and VeCLR encourage
the latent space generated by positive pairs to lie close to each other,
and push the one produced by negative pairs apart.

Extensive experiments demonstrate that our approach is effec-
tive in both unoccluded and occluded scenarios. Compared with
the state-of-the-art unsupervised methods (e.g. [38]), our approach
not only achieves superior performance on the unoccluded in-
door benchmarks like Human3.6M [10], but also obtains signif-
icantly improvement (65.8% in terms of P-MPJPE) in simulated
occlusion conditions. Furthermore, experiments on 3DPW [34] and
3DOH50K [40] illustrate that our approach provides reasonable
predictions when real-world occlusion is involved.

2 RELATEDWORK
Unsupervised 3D Pose Estimation.Most works [10, 11, 15, 21,
30, 39] perform fully / weakly supervised 3D pose estimation with

densely annotated 3D joints [10] or 2D key-points [21]. The an-
notation process itself could be a laborious task, which motivates
research towards unsupervised 3D pose estimation. Under such
condition, the usage of any ground truth 3D pose information or
relevant projection is not allowed, which is more practical and chal-
lenging compared to supervised setting. Rhodin et al. [25] propose
to learn a geometry-aware body representation from multi-view
images without annotations, where multi-view information is used
as a guidance signal for learning geometry-aware representation.
Chen et al. [1] exploit the geometric self-consistency through the
lift-reproject-lift process. Several works [13, 17] aim to learn the
2D key-points via background/foreground disentangling. Recently,
Kundu et.al. [16] propose to explicitly constrain the 3D pose by
modeling it at its most fundamental form of rigid and non-rigid
transformations, resulting in interpretable 3D pose predictions,
even without any auxiliary 3D cues such as multi-view or depth
information. Yu et al. [38] introduce a 2D pose scale estimation
module and then map optimized 2D pose to 3D counterpart via a
pose lifting module to alleviate the scale and pose ambiguity.

Pose Estimationwith Occlusion. Pose estimation often suffers
from performance degradation due to occlusion [4, 14, 26–28, 40, 41].
To tackle this problem, Zhou et al. [41] propose an occlusion-aware
siamese network equipped with erasing and reconstruction sub-
module to obtain cleaner feature representation and reconstruct
the information destroyed by occlusion. To improve the robustness
under occlusion, CenterHMR [31] predicts the Center maps and
the Parameter maps, which represent the location of each human
body center and the corresponding parameter vector of 3D human
mesh at each center. Cheng et al. [4] first filter out the unreliable
estimations of occluded key-points and then feed incomplete 2D
key-points to temporal convolutional networks, which further pro-
duces a complete 3D pose via constraining the temporal smoothness.
To solve object occlusion, Zhang et al. [40] take a partial UV map
representation for object-occluded 3D human body and convert the
full 3D human pose estimation as an image inpainting problem. In
this work, we propose two occlusion-aware contrastive learning
module to explicitly address the occlusion problem.

Contrastive Representation Learning. Contrastive learning
aims to learn representations from unlabeled data by instance dis-
crimination. CPC [33] achieves this goal by maximizing the mutual
information between correlated instances with an InfoNCE loss.
SimCLR [3] presents a simple framework by maximizing agreement
between differently augmented views of the same data example.
Due to its effectiveness, contrastive representation learning has
been applied to many vision tasks [3, 8, 18]. Recently, Mitra et
al. [23] leverage multiview consistency to guide 3D human pose
regression based on contrastive loss. Spurr et al. [29] use contrastive
learning to learn the self-supervised representation with geometric
consistency for 3D hand pose estimation. Li et al. [19] propose
a cross-view contrastive learning framework for skeleton-based
action representation, where cross-view consistent knowledge min-
ing is developed to excavate useful samples across views. However,
previous works are not carefully designed for occlusion problem.
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Figure 2: Overview of OCR-Pose. OCR-Pose exploits the backbone network (i.e., the pose filling and lifting networks) to obtain
occlusion-aware contrastive learning representation, which is used to regress 3D skeleton directly. Notably, the occlusion-
aware feature is optimized with TiCLR module and VeCLR module, simultaneously. Both modules encourage the latent space
generated by positive pairs to lie close to each other, and push the one produced by negative pairs apart.
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Figure 3: Illustration of feature decoupling process. The
pose lifting network converts the 2D pose into a decoupled
semantic feature containing a view-dependent part and a
view-invariant part. Then an occlusion-aware constrastive
learning-based scheme (OCR-Pose) containing TiCLR and Ve-
CLR is proposed to optimize the view-invariant part termed
occlusion-aware feature. Specifically, the view-dependent
part is trained by relative rotation consistency during the
view cycle pipeline. While the view-invariant part (i.e.,
occlusion-aware feature) is optimized with TiCLR and Ve-
CLR constraints to enforce occlusion and view irrelevance.
Finally, both two parts jointly regress the relative depth and
then obtain the estimated 3D skeleton.

3 METHODS
3.1 Overview
The overall framework of the proposed OCR-Pose is illustrated in
Fig. 2, which consists of TiCLR and VeCLR modules. Additionally,

the backbone of OCR-Pose contains two basic networks, i.e., a pose
filling network Φ𝐹 completing occluded 2D pose, and a pose lifting
network Φ𝐿 mapping 2D pose to 3D skeleton. We exploit off-the-
shelf pose detectors [6, 35] to predict 2D joints with confidence
score as input. Meanwhile, the confidence score produced by 2D
detectors is an informative indicator for the reliability of joint loca-
tions. We experimentally find that masking 2D joints with a low
confidence score exhibits better performance than using complete
but incorrect ones (see Sec. 4.5). That is to say, our OCR-Pose can
lift complete 2D poses, incomplete 2D poses, or complete 2D poses
with confidence scores to 3D skeletons, which diminishes the de-
pendency on the accuracy of 2D detectors. Notably, for complete
2D joints, we use masking operation to simulate occluded 2D joints.
For incomplete 2D joints, we need to use an extra filling network to
map incomplete 2D joints to complete 2D joints. Then the following
training procedure is the same as that for complete 2D joints.

In Sec. 3.2 we make a review of the classic unsupervised 3D
human pose estimation pipeline [1, 38]. In Sec. 3.3 we introduce
our decoupled occlusion-aware feature representation based on
the classic pipeline. In Sec. 3.4 and Sec. 3.5 we propose two novel
contrastive modules to optimize the decoupled representation.

3.2 Pose Lifting Baseline
In this section, we make a review of classic unsupervised pose
estimation baseline [1, 38]. The framework consists of a pose lift-
ing module Φ𝐿 and a discriminator Φ𝐷 . The pose lifting network
takes 2D pose 𝐽 2𝐷 = (𝑥𝑖 , 𝑦𝑖 )

𝑁 𝐽

𝑖=1 as input to regress relative depth
𝑑𝑖 and the absolute depth can be calculated by 𝑧𝑖 = max(1, 𝑑𝑖 + 𝐷),
where 𝐷 is a pre-defined distance between the camera and the hu-
man skeleton. Then estimated 3D joints 𝐽 3𝐷 can be computed as
𝐽 3𝐷
𝑖

= (𝑥𝑖𝑧𝑖 , 𝑦𝑖𝑧𝑖 , 𝑧𝑖 ) = Φ𝐿 (𝐽 2𝐷 ). 𝐽 3𝐷 is then randomly transformed
to 𝐽𝑅3𝐷 = T (𝐽 3𝐷 ). The random transform T is composed of a
random rotation R and a fixed translation to the plane (0, 0, 𝐷). Fur-
ther, transformed 3D joints 𝐽𝑅3𝐷 is projected to 𝐽𝑅2𝐷 = P(𝐽𝑅3𝐷 ),
re-lifted to 𝐽𝑅3𝐷 = Φ𝐿 (𝐽𝑅2𝐷 ), inversely transformed to 𝐽 3𝐷 =

T−1 (𝐽𝑅3𝐷 ) and finally projected to 𝐽 2𝐷 = P(𝐽 3𝐷 ). In this way, a
loop closure is constructed and L2 loss is used to constrain the 2D /
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Figure 4: Detailed structure of OCR-Pose. The basic cycle structure in the left contains one pose lifting network, one pose
filling network and a discriminator, with one mask operation, two rotation operations, and two projection operations. Two
contrastive representation learning modules in the right consist of TiCLR and VeCLR modules.

3D consistency as in Eq. 1.

L2𝐷 = ∥ 𝐽 2𝐷 − 𝐽 2𝐷 ∥2 L3𝐷 = ∥ 𝐽𝑅3𝐷 − 𝐽𝑅3𝐷 ∥2 (1)

Furthermore, a discriminator Φ𝐷 is introduced to encourage the
rationality of 2D pose and lifted 3D skeleton via adversarial training.
Specifically, the discriminator is trained to discriminate input 2D
pose as real, projected 2D poses as fake, while the pose lifting net-
work is trained to produce realistic 3D estimations, the projections
of which can fool the discriminator. The adversarial loss function
is shown in Eq. 2.

min
𝜃𝐿

L𝑎𝑑𝑣 (Φ𝐿) = E[Φ𝐷 (𝐽𝑅2𝐷 ) − 1]2

min
𝜃𝐷

L𝑎𝑑𝑣 (Φ𝐷 ) = E[Φ𝐷 (𝐽 2𝐷 ) − 1]2 + E[Φ𝐷 (𝐽𝑅2𝐷 )]2
(2)

By exploiting self-consistency and the prior learnt from adversar-
ial training, the unsupervised baseline can produce reasonable 3D
estimations. However, a key problem is the sensitivity to the distri-
bution of input 2D joints. Missing joints(e.g. due to occlusion) or
inaccurate estimations can significantly degrade the performance.
To alleviate this problem, we introduce an extra pose filling network
and two contrastive modules, which leverage the occlusion-aware
representation for more robust and accurate 3D estimations.

3.3 Decoupled Semantic Feature
In this section, as illustrated in Fig. 3, we exploit the pose lifting
network [38] to convert the 2D pose into a decoupled semantic
feature comprised of a view-invariant part (occlusion-aware fea-
ture) and a view-dependent part (rotation feature), motivated by
the unsupervised baseline architecture and its limitation discussed
in Sec. 3.2. Then an occlusion-aware contrastive learning-based
scheme containing TiCLR and VeCLR modules is utilized to op-
timize the occlusion-aware feature. We experimentally find that
the decoupled semantic feature is able to facilitate the contrastive
learning performance, yielding more stable convergence. Three

major improvements on the pose lifting network are exhibited as
follows: 1) A pose filling network Φ𝐹 is designed to complete
missing joints or refine inaccurate 2D joints. Given incomplete
2D joints 𝐽𝑀2𝐷 (which can be caused by occlusion or obtained by
masking complete one 𝐽𝑀2𝐷 = M(𝐽𝐶2𝐷 )), Φ𝐹 outputs the filled
results 𝐽 2𝐷 . L2 loss in Eq. 3 is used to supervise Φ𝐹 .

L𝑝𝑓 = ∥ 𝐽 2𝐷 − 𝐽𝐶2𝐷 ∥2 (3)

2) The proposed pose filling network is trained along with
the pose lifting network in a unified manner. Not only Eq. 3 is
optimized together with the pose lifting network, but also the pose
filling model is incorporated into the adversarial training scheme,
which leads to Eq. 4.

min
𝜃𝐹 ,𝜃𝐿

L𝑎𝑑𝑣 (Φ𝐹,𝐿) = E[Φ𝐷 (𝐽 2𝐷 ) − 1]2 + E[Φ𝐷 (𝐽𝑅2𝐷 ) − 1]2

min
𝜃𝐷

L𝑎𝑑𝑣 (Φ𝐷 ) = E[Φ𝐷 (𝐽𝐶2𝐷 ) − 1]2

+ E[Φ𝐷 (𝐽 2𝐷 )]2 + E[Φ𝐷 (𝐽𝑅2𝐷 )]2

(4)

The advantages of unifying the two networks instead of using a
standalone filling network are two-fold. Firstly, the diverse filled 2D
joints produced by Φ𝐹 make the pose lifting network more robust
to input 2D distribution. Secondly, adversarial training encourages
the pose filling model to produce more realistic 2D joints to fool
the discriminator. 3) We decouple the 3D representation into
a view-invariant part (occlusion-aware feature) and a view-
dependent part (rotation feature). The two features are learnt
from separate linear layers and then concatenated to regress the
relative depth 𝑧. The occlusion-aware feature is a latent vector
𝐹𝑜𝑐𝑐 ∈ R𝑑𝑜𝑐𝑐 , while the rotation features 𝐹𝑟𝑜𝑡 ∈ R6 take the explicit
form of rotation matrices(6D representation). The two matrices 𝑟, 𝑟 ′
produced by two lifting passes are constrained by relative rotation
consistency in Eq. 5.

L𝑟𝑜𝑡 = ∥𝑟−1𝑟 ′ − 𝑟∗∥2 (5)
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𝑟∗ is the reference rotation matrix in random rotation R. When de-
coupled from the view-dependent features, view-invariant features
focus more on the topology itself, providing a representation better
prepared for occlusion-aware learning. In Sec. 3.4 and Sec. 3.5 we
propose two contrastive modules to optimize above representation.

3.4 TiCLR module
The proposed occlusion-aware representation should be robust to
topology transformation. In other words, the representation should
not change dramatically when part of the 2D pose is occluded.
To this end, we design a topology invariant contrastive learning
module(TiCLR), which optimizes over the occlusion-aware repre-
sentation via an attention mechanism and a contrastive loss L𝑡𝑖 .

A contrastive loss [7] is a metric indicating the similarity be-
tween the anchor sample and the corresponding positive one, and
the dissimilarity between the anchor sample and the others. In Fig. 4
(b), the positive sample is the corresponding unoccluded 2D pose,
whereas the negative samples refer to other occluded 2D ones. Fur-
thermore, we design a hard example mining module Φ𝐴 , consisting
of an embedding layer, a dot product layer followed by softmax
operation, which exploits the attention mechanism to widen the
difference between the negative pairs.

Specifically, we denote 𝑧𝑡𝑖 , 𝑧+𝑡𝑖 , 𝑧
−
𝑡𝑖
∈ R𝐷𝑧 as the embeddings se-

lected from the occlusion-aware features, corresponding to the
anchor sample, the positive sample, and the negative samples.
Then we ensemble the embedding features of one anchor, one
positive sample and 𝐾 negative samples into a sample matrix𝑀 =

(𝑧𝑇
𝑡𝑖
; (𝑧+

𝑡𝑖
)𝑇 ; (𝑧−

𝑡𝑖
)𝑇 ), 𝑀 ∈ R(𝐾+2)×𝐷𝑧 . The attention matrix is com-

puted by𝑊 = Φ𝐴 (𝑀),𝑊 ∈ R(𝐾+2)×(𝐾+2) . We update the original
sample matrix𝑀 by𝑀 ′ = (𝑧𝑇

𝑡𝑖𝑎
; (𝑧+

𝑡𝑖𝑎
)𝑇 ; (𝑧−

𝑡𝑖𝑎
)𝑇 ) =𝑊𝑀 .

Finally, the contrastive loss is calculated as follows:

L𝑡𝑖 = − log
exp(𝑧𝑡𝑖𝑎 · 𝑧+𝑡𝑖𝑎/𝜏)

exp(𝑧𝑡𝑖𝑎 · 𝑧+𝑡𝑖𝑎/𝜏) +
∑𝐾
𝑗=1 exp(𝑧𝑡𝑖𝑎 · 𝑧−𝑡𝑖𝑎,𝑗/𝜏)

(6)

Where 𝜏 is the temperature hyper-parameter [9], and dot product ·
is to compute their similarity where each component is normalized.
The sum is over one positive and 𝐾 negative samples. Constrained
by contrastive loss L𝑡𝑖 , the TiCLR module is able to learn the
information of missing joints in an unsupervised manner.

3.5 VeCLR module
With the feature decoupling strategy in Sec. 3.3, the occlusion-aware
representation is expected to be view-equivariant(i.e. unchanged
under any rotation transform). From Fig. 1, we can observe that a
visible joint can be occluded in another viewpoint, which motivates
us to design a view-equivariant contrastive learningmodule(VeCLR)
to leverage the occlusion-aware representation. Specifically, we
constrain the representation to be similar under a sequence of
rotation, projection, masking and re-lifting operations(see Fig. 2).
Similar to Eq. 6, we present the InfoNCE loss L𝑣𝑒 as follows:

L𝑣𝑒 = − log
exp(𝑧𝑣𝑒𝑎 · 𝑧+𝑣𝑒𝑎/𝜏)

exp(𝑧𝑣𝑒𝑎 · 𝑧+𝑣𝑒𝑎/𝜏) +
∑𝐾
𝑗=1 exp(𝑧𝑣𝑒𝑎 · 𝑧−𝑣𝑒𝑎,𝑗/𝜏)

(7)

where 𝑧𝑣𝑒𝑎, 𝑧+𝑣𝑒𝑎, 𝑧−𝑣𝑒𝑎 ∈ R𝐷𝑧 indicate the embedding features
with attention mechanism generated by the anchor sample, positive

sample, and negative samples. Notably, the positive sample is the
representation of the re-lifted 3D skeleton after the random rotation,
while negative samples correspond to other 3D skeletons with a
significant difference filtered by attention mechanism.

In the end, TiCLR and VeCLR both optimize occlusion-aware
representation with pose filling and pose lifting network with
L𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 and L𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 via an iterative training strategy [38].

L𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 = 𝑤𝑝𝑓 L𝑝𝑓 +𝑤2𝐷L2𝐷 +𝑤3𝐷L3𝐷

+𝑤𝑎𝑑𝑣L𝑎𝑑𝑣 +𝑤𝑟𝑜𝑡L𝑟𝑜𝑡
(8)

L𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 = 𝑤𝑡𝑖L𝑡𝑖 +𝑤𝑣𝑒L𝑣𝑒 (9)
Where L𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 is used to train the backbone network (i.e.,

pose filling and lifting network) to obtain more reasonable 3D
skeletons, and L𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 is utilized to optimize the pose filling
network to achieve more accurate completed 2D poses. Both two
losses are complementary to each other and reduce the learning
difficulty by a large margin.

3.6 Implementation Details
Network Architecture.We use a simple auto-encoder structure

with 4 layers and hidden dimension ℎ1 = 128 for the pose filling
network. For the pose lifting network and the discriminator, we use
residual building blocks like Yu et al. [38], with dimension ℎ2 = 512.
View-invariant feature dimension 𝑑𝑜𝑐𝑐 is set to 512. The pose lifting
network has 4 blocks and the discriminator has 2 blocks.

Training Details. For hyper-parameters regarding the pose
lifting baseline, we keep the same with [38]. Constant 𝐷 is set to
10, the azimuth is sampled from [−7𝜋/9, 7𝜋/9] and elevation is
sampled from [−𝜋/9, 𝜋/9] in random rotation.

In our design, the pose filling network and the pose lifting net-
work are optimized in an iterative training strategy. Specifically,
we first train the pose filling network with L𝑝𝑓 for 10 epochs as a
warmup. Then we optimize the backbone network (i.e., pose filling
and lifting network) along with the two contrastive modules via an
iterative training strategy with L𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 and L𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 for 100
epochs. Loss weights in Eq.9 are set to𝑤𝑝𝑓 = 10,𝑤2𝐷 = 5,𝑤3𝐷 =

0.5,𝑤𝑎𝑑𝑣 = 1,𝑤𝑡𝑖 = 0.3,𝑤𝑣𝑒 = 0.1. The temperature parameter in
the contrastive modules is set to 𝜏 = 0.5. We adopt Adam optimizer
with initial learning rate equal to 0.0002 and batch size is set to 512.
Since negative samples in both contrastive modules are sampled
from the batch, we have 𝐾 = 511.

4 EXPERIMENTS
4.1 Datasets And Metrics

Human3.6M [10] is a large scale in-door dataset, which is com-
prised of about 3.6 million frames with densely annotated 3D an-
notations. Human3.6M is the most widely used benchmark for 3D
human pose estimation.

MPI-INF-3DHP [22] is another 3D human pose dataset, consist-
ing of over 1.3 million frames from multiple viewpoints. Different
from Human3.6M, some sequences in MPI-INF-3DHP are captured
in the wild, making it more suitable for stronger algorithms.

3DPW [34] is a completely in-the-wild dataset withmore compli-
cated scenes. 3DPW consists of 60 video sequences. Diverse actions
and occlusion make the dataset more challenging.
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Supervision Algorithm GT Pre

Fully Supervised
Martinez et al. [21] 37.1 47.7
Pavllo et al. [24] 27.2 36.5
Wang et al. [36] - 32.7

Weakly Supervised

AIGN et al. [32] 79.0 97.4
Kanazawa et al. [12] - 67.5
Drover et al. [5] 38.2 64.6
Li et al. [20] - 66.5

Unsupervised

Rhodin et al. [25] - 98.2
Chen et al. [1] 51.0 68.0
Kundu et al. [16] - 62.4
Yu et al. [38] 46.0 54.9∗
Ours 44.7 54.7

Table 1: Experimental results on the test set of Hu-
man3.6M. The input 2D joints are unoccluded. GT / PREde-
note results from ground truth 2D pose and estimated 2D
pose by 2D detector respectively. *indicates single-frame
results released in their github page1.

3DOH50K [40] is the first real 3D human dataset designed espe-
cially for occlusion scenarios in the problem of human reconstruc-
tion and pose estimation. It contains 51600 samples.

Evaluation Metrics We report the most widely used metric
P-MPJPE, which is the euclidean distance between ground-truth
3D poses and predictions after rigid alignment. We also report the
Percentage of Correct Keypoints (PCK3D) and Area Under Curve
(AUC) for MPI-INF-3DHP.

4.2 Experimental Settings
To explore the performance of unsupervised 3D pose estimation
under occlusion, our experimental settings are listed as follows: (a).
Unocclusion condition. This setting is the same as the standard
one. We use masking operation in the training procedure. We de-
sign this setting to show the superiority of our OCR-Pose compared
with previous methods fairly. (b). Occlusion condition. This set-
ting is only different from the standard one in the testing procedure.
We use incomplete 2D joints as input instead of complete 2D joints.
We present this setting to exhibit the effectiveness of our method
under occlusion. (c). Unocclusion condition with confidence
score. This setting has extra confidence scores compared the stan-
dard one a), which is very common when using off-the-shelf 2D
detectors. (d). Unocclusion condition with occluded training
data. This setting is only different from the standard one in the
training procedure, where we use mixed 2D joints (i.e., complete
and incomplete 2D joints). We propose this setting to show that
our method can generalize to heavily occluded datasets including
self-occlusion or object-occlusion.

4.3 Results in unoccluded Condition
To better prove the effectiveness of the occlusion-aware represen-
tation, we conduct experiments on simulated occlusion scenarios
on Human3.6M [10]. During training, we select possibly occluded

Supervision Algorithm Trainset PCK↑ AUC↑

Fully Supervised
Mehta et al. [22] H36M 64.7 31.7
Chen et al. [2] 3DHP 87.9 54.0
Wang et al. [36] 3DHP 86.9 62.1

Weakly Supervised Kanazawa et al. [12] 3DHP 77.1 40.7
Zhou et al. [42] H36M 69.2 32.5

Unsupervised
Chen et al. [1] H36M 64.3 31.6
Yu et al. [38] H36M 82.2 46.6

Ours H36M 83.4 47.3

Table 2: Experimental results on the test set of MPI-INF-
3DHP with unoccluded 2D joints.

Max #joints to mask(N) Method Visible All

0 Yu et al. [38] 46.0 46.0
0 Ours 44.7 44.7

3 Yu et al. [38] 130.8 289.6
3 Ours(w/o decouple) 51.5 58.9
3 Ours(w/ decouple) 49.0 56.6
3 Ours(+VeCLR) 47.4 55.1
3 Ours(+VeCLR+TiCLR) 47.0 54.8

4 Ours(+VeCLR+TiCLR) 53.1 62.4
5 Ours(+VeCLR+TiCLR) 55.2 72.7

Table 3: Experimental results on the test set of Hu-
man3.6M under occluded conditions. A random number
𝑛 ∼ U(0, 𝑁 ) of joints aremasked from the 2D inputs. “Vis-
ible” means evaluation is only performed on unmasked
2D key-points. “All” means evaluation is performed on
all 2D key-points.

joints from 2D skeleton according to semantic segmentation la-
bels [37] or key-point confidence, and then randomly mask out
some joints. We evaluate the proposed OCR-Pose in unoccluded
conditions and report the results in Tab. 1. On Human3.6M, our
approach achieves 44.7 P-MPJPE when input is 2D ground-truth
and 54.7 when input is 2D predictions. The performance is su-
perior to most weakly-supervised and all unsupervised methods.
In particular, our approach obtains slight improvement over a re-
cent state-of-the-art unsupervised method Yu et. al. [38](we take
the single-frame performance from their github page1). More-
over, when the model trained on Human3.6M is transferred to
MPI-INF-3DHP, our approach surpasses [38] again, proving the
generalization ability of our approach.

4.4 Results in occluded Condition
To verify the robustness of the proposed framework under occlu-
sion, we evaluate on simulated occlusion scenarios onHuman3.6M [10].
Besides, occlusion dataset 3DPW [34] and 3DOH50K [40] are also
evaluated to demonstrate the generalization ability to real-world
occlusion conditions.

1https://github.com/deepinsight/insightface/tree/master/body/human_pose/
ambiguity_aware
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A. Results on Human3.6M dataset

B. Results on 3DHP dataset

C. Results on 3DPW dataset

D. Results on 3DOH50K dataset

Figure 5: Qualitative results on 4 different datasets. Notably, predictions (red) along with ground truth (green) are illustrated in
each part (A/B). 1st Row: Human3.6M. 2nd Row: MPI-INF-3DHP. 3rd Row: 3DPW. 4th Row: 3DOH50K.

As can be seen in Tab. 3, the performance of [38] drops dramati-
cally with the introduction of occlusion. The reason is that classic
2D-3D pose lifting networks are sensitive to the change in input 2D
distribution. In other words, outliers in the input-side (e.g. occlu-
sion) will be a disaster for the network trained on unoccluded data.
In contrast, in our approach, the pose filling network completes the
missing parts conditioned on the whole skeleton, which also makes
the input 2D distribution more stable and better prepared for the
lifting network. We can observe that even when we mask out up
to 5 parts in 2D inputs, the performance is still comparable to [32].
Notably, visible only evaluation(second last column in Tab. 3) in also
shows significant improvements on unmasked key-points.

On 3DPW [34], unassigned 2D key-points are treated as occluded
ones. On 3DOH-50K [40], we use AlphaPose [6] to obtain 2D pre-
dictions with confidence scores. Then key-point with confidence
below 0.1 are treated as invisible (in Sec. 4.5 we exploit the usage of
confidence). Qualitative results are shown in Fig. 5. Our approach
provides reasonable pose completion and accurate 3D estimation
for in-the-wild scenarios.

4.5 Results in Unocclusion with Confidence
During the past few years, mainstream 2D detectors [6] follow the
design of key-point heatmaps, where confidence for each key-point
is available. Our approach can make use of such scores to make
more accurate predictions.

In scenarios with minor occlusion where 2D detector is compe-
tent, it’s unnecessary to mask out 2D joints. Rather, it works better
to refine 2D joints with pose filling network:

𝑋𝑜𝑢𝑡 = 𝑐𝑑𝑒𝑡𝑋𝑑𝑒𝑡 + (1 − 𝑐𝑑𝑒𝑡 )𝑋𝑝𝑓 (10)

where 𝑐𝑑𝑒𝑡 is the confidence score produced by 2D detectors to
weight between original 2D estimations𝑋𝑑𝑒𝑡 and the output of pose
filling model 𝑋𝑝𝑓 . Actually Eq. 10 can be unified with scenarios
without key-point confidence by setting 𝑐𝑑𝑒𝑡 for visible key-points
to 1 and others to 0. To verify the effectiveness of such formulation,
we use AlphaPose [6] to obtain 2D predictions on the test set of
3DOH50K and use our model trained on Human3.6M to obtain 3D
estimations.When using the filling network to refine 2D predictions
like Eq. 10, P-MPJPE reduces from 90.0 to 87.3. The reason is that
the 2D detector exploits image cues to provide 2D estimations but
rationality is ignored. Moreover, the pose filling network can adapt
2D inputs to the pose lifting network for better 3D estimation.
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A B C D

anchor sample negative samplepositive sample

: random poses / views

E F G H

varying  𝐹rot with the same 𝐹𝑜𝑐𝑐/

0° 15° 30°

Figure 6: A-E: The t-SNE visualization of view-invariant fea-
tures in the latent space. A/B correspond to w/ andw/o TiCLR.
C/D indicate w/ and w/o VeCLR. E corresponds to 2D skele-
tons projected from the same 3D skeleton to different views
(blue) and 2D skeletons projected from different 3D skele-
tons (green). F-H correspond to varying the view-dependent
feature with the same view-invariant feature.

(b) Yu (d) Ours(a) Origin 2D (c) Refined 2D

Figure 7: Qualitative comparison of 2D completion and 3D
estimation on Human3.6M, 3DPW and 3DOH50K. The 1st
row and 2nd row show the simulated/real-worldmissing joint
caused by occlusion. In the 3rd row, 2D detector provides
an inaccurate estimation. Refined 2D (c) are produced by
the proposed filling network. [38] (b) and ours (d) are the
corresponding estimated 3D skeletons of two methods.

In particular, if there exist 2D joints with extremely low confi-
dence (due to e.g. truncation, serious occlusion), we find it’s better
to mask out these key-points as missing ones and rely on the pose
filling network to perform completion. We show some examples in
Fig. 7. Quantitatively, we mask out the prediction from AlphaPose
whose confidence is below 0.1 (i.e. set 𝑐𝑑𝑒𝑡 = 0) and follow Eq. 10,
P-MPJPE reduces from 87.3 to 86.8 on the test set of 3DOH50K.

4.6 Results in Unocclusion with Occluded Data
To verify that our approach can also generalize to scenarios where
occlusion exists during training (i.e., there is no way to obtain

complete counterparts), we simulate occluded training data on Hu-
man3.6M. Specifically, we randomly mask 10% 2D poses by 0-3
key-points at the beginning, and directly use the pose filling net-
work to predict missing key-points. For TiCLR module, the positive
samples come from a second-time random erasing since complete
ones are unavailable. The performance on the same Human3.6M
test set is 47.6, which is only a slight drop from 47.0 achieved with
all training data unoccluded.

4.7 Module Analysis
Analysis on feature decoupling. a) To show the superiority of
proposed decoupled representation, we experiment with a non-
decoupled version in Tab. 3. The pure decoupled representation
boosts the performance by ∼ 1.5 points on MPJPE. Moreover, the
coupled representation is unsuitable for view-equivariance opti-
mization, while the decoupled version can further bring an im-
provement of ∼ 2 points via leveraging two contrastive modules. b)
To illustrate that we do decouple the view-invariant feature from
the view-dependent part successfully, we make a visualization in
the second row of Fig. 6. Firstly, we project one 3D skeleton to
different 2D views and use the pose lifting network to extract the
view-invariant features, which are visualized in blue color. Features
extracted from different 3D skeletons’ projections are visualized
in green color. As expected, features from the same 3D skeletons
but different views form a small cluster in the latent space and is
well separated from those from different 3D poses. Secondly, we
use the same view-invariant features and vary the view-dependent
part(increase the rotation around 𝑦 axis from 0 to 45 degrees), and
then regress 3D skeletons. The results display little pose difference
and gradual rotation around the 𝑦 axis. We experimentally find that
the network can’t capture a significant change in the global fea-
ture(e.g. drift in the latent space). We attribute this to the intrinsic
ambiguity of orientation regression from 2D poses only.

Analysis on contrastive learningmodules.We quantitatively
study the effectiveness of TiCLR and VeCLR modules. The results
are reported in Tab. 3. With the introduction of VeCLR module,
P-MPJPE reduces from 49.0 to 47.4. Moreover, the TiCLR module
brings an improvement to 47.0. To verify that contrastive learning
does help separate occluded samples from others from the anchor,
we use t-SNE to visualize the features learnt by the pose lifting
network in Fig. 6. Besides, the same skeleton, when projected to
different views, produces closer features in latent space with the
help of VeCLR module.

5 CONCLUSION
In this paper, we propose an occlusion-aware contrastive represen-
tation based scheme (OCR-Pose) consisting of TiCLR and VeCLR
modules. Both modules optimize the corresponding representa-
tion via an iterative training strategy. Extensive experiments show
that our model achieves the state-of-the-art performance on re-
lated human pose estimation datasets, and obtains the comparable
performance under occlusion.
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