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Abstract

In this work, we study the ambiguity problem in the

task of unsupervised 3D human pose estimation from 2D

counterpart. On one hand, without explicit annotation,

the scale of 3D pose is difficult to be accurately captured

(scale ambiguity). On the other hand, one 2D pose might

correspond to multiple 3D gestures, where the lifting pro-

cedure is inherently ambiguous (pose ambiguity). Previ-

ous methods generally use temporal constraints (e.g., con-

stant bone length and motion smoothness) to alleviate the

above issues. However, these methods commonly enforce

the outputs to fulfill multiple training objectives simulta-

neously, which often lead to sub-optimal results. In con-

trast to the majority of previous works, we propose to split

the whole problem into two sub-tasks, i.e., optimizing 2D

input poses via a scale estimation module and then map-

ping optimized 2D pose to 3D counterpart via a pose lifting

module. Furthermore, two temporal constraints are pro-

posed to alleviate the scale and pose ambiguity respectively.

These two modules are optimized via a iterative training

scheme with corresponding temporal constraints, which ef-

fectively reduce the learning difficulty and lead to better

performance. Results on the Human3.6M dataset demon-

strate that our approach improves upon the prior art by

23.1% and also outperforms several weakly supervised ap-

proaches that rely on 3D annotations. Our project is avail-

able at https://sites.google.com/view/ambiguity-aware-hpe.

1. Introduction

Human pose estimation has received considerable atten-

tion in computer vision community [2, 6, 28, 37]. As a fun-

damental module, it is widely used in many downstream

applications, such as body reconstruction [14], robotics ma-

nipulation [26], and augmented reality [10]. In this paper,

we are interested in unsupervised monocular 3D pose esti-

mation. Due to the high-cost and time-consuming annota-

*corresponding author

tion procedure of 3D skeleton, unsupervised / weakly super-

vised 3D pose estimation [40, 3] has turned into an emerg-

ing trend in this field.

Recent unsupervised approaches [29, 12, 19, 17], i.e.,

without access to 3D annotations in any form, mainly use

2D annotations [3], unlabelled multi-view imagery [12] or

learned 3D priors [17] to bypass the need of 3D annotation.

Compared to easily accessible 2D annotations, the manual

3D priors are tedious and employing the multi-view images

requires specific multi-camera equipment. Recently, Chen

et.al. [3] propose a geometric constraint for single-frame

unsupervised 3D pose estimation, which get rid of the need

for the multi-view cameras.

However, there still exist two challenges remained to be

solved: (a) Scale ambiguity. The scale of 3D pose is hard

to be accurately captured if without the supervision of 3D

annotations. We experimentally find that the scale of esti-

mated 3D skeletons under unsupervised setting is prone to

drift far away from ground truth. Simply enforcing the scale

consistency of the predicted 3D skeleton (i.e., bone length

consistency loss [20]) only leads to marginal improvements,

which is supported by our ablation study in Sec 4.4. (b)

Pose ambiguity. Lifting 2D pose to 3D counterpart is in-

herently ambiguous [19], where a single 2D pose possibly

corresponds to multiple 3D poses. Multi-view data [3] is

able to effectively address such kind of ambiguity. Chen

et.al. [3] firstly propose to generate pseudo view to alle-

viate the ambiguity, which, however, ignores the tempo-

ral constraints between frames. 3D constraints (e.g., cycle

loss [3], bone length consistency loss [20], camera projec-

tion loss [17]) have been previously proposed to address the

above two challenges. However, they are commonly con-

sidered as auxiliary losses, i.e., enforcing the outputs to ful-

fill multiple training objectives simultaneously. Such kind

of training scheme often leads to sub-optimal results [36].

To solve the above challenges, we propose to split the

whole problem into two sub-tasks, i.e., optimizing 2D pose

via scale estimation (short termed as scale estimation) and

lifting optimized 2D pose to 3D counterpart (short termed as

pose lifting). Furthermore, two temporal consistency con-
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Figure 1: The detailed architecture of proposed framework. 3D pose estimation task is split into two parts, i.e., scale

estimation module (green box) and pose lifting module (orange box). Pose lifting module contains two lifting networks

and one discriminator. The lifting network takes the scaled 2D pose as input and outputs estimated 3D skeleton. Random

projection of generated 3D skeleton goes through the lifting network, inverse transformation, and re-projection process again,

allowing the network to self-supervise the training process by exploiting temporal geometric consistency. It should be noted

that the scale estimation module and the pose lifting modules are trained iteratively in an end-to-end manner.

straints are incorporated into these two sub-tasks respec-

tively: (a) Temporal scale consistency. Scale estimation

module is used to optimize the scale of 3D pose. Accord-

ing to perspective projection [3], optimizing the scale of 3D

skeletons equals to changing the scale of 2D pose and we

experimentally find that constraining 2D scale is slightly

better than 3D counterpart. Firstly, we propose a distribu-

tion constraint to coarsely adjust the 2D scale at the video

level. Secondly, a bone constraint is proposed to optimize

the scale of 2D pose at the frame level. Both aspects of con-

straints are seamlessly integrated into the scale estimation

module, which effectively overcomes the scale ambiguity

problem along the temporal direction. Pose lifting mod-

ule then takes optimized 2D pose as input, where the scale

estimation module helps reduce the learning difficulty of

pose lifting and improve the estimation accuracy on in-the-

wild data [24] by a large margin. (b) Multi-view motion

consistency. Multi-view data [5], even synthesised from

imagery [5], has shown its efficiency on single-frame 3D

pose estimation. Inspired by the above operation, we pro-

pose a simple yet effective temporal constraint, which nat-

urally generalizes the single-frame multi-view constraint to

the video data (i.e., the motion trajectories across different

views are encouraged to match with each other). To en-

hance the training stability, we propose an iterative training

strategy, which achieves promising performance.

Extensive experiments demonstrate that our model

achieves the state-of-the-art performance on two widely

used 3D human motion datasets. Results on the Hu-

man3.6M [11] dataset for 3D human pose estimation exhibit

that our approach improves upon the previous unsupervised

methods by 23.1% and also outperforms several weakly su-

pervised approaches that explicitly use 3D annotations. We

also conduct detailed ablation studies to demonstrate the

contribution of each component of the proposed framework.

2. Related Work

Fully Supervised pose estimation. Catalin et.al. [11]

firstly provides a large-scale indoor dataset, i.e., Hu-

man3.6M [11], for 3D poses estimation with densely anno-

tated joints. Facilitated by strong supervision signal, Julieta

et.al. [22] proposes to utilize a simple yet effective model to

predict the location of 3D joints with 2D key-points as in-

puts. This leads to a promising way for 3D pose estimation,

i.e, based on the accurately estimated 2D joints. With access

to the skeleton topology of human subject, structured con-

straint [18] is incorporated into the training procedure for

better estimation of 3D key-points. Following the routine

of the above work, Sun et.al. [30] decomposes the 3D co-

ordinates of skeleton joints in a parameterized way. Mean-

while, a compositional loss function leveraging the tempo-

ral relationship in the pose is proposed to better modeling

spatial-temporal structure of the human subjects. Noguer

et.al. [25] considers the monocular 3D pose estimation task

as a regression problem between matrices represented with
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3D and 2D key-point distances. Also facilitated by struc-

tural property of the skeleton and correlations among key

points, such representations facilitate reducing the inherent

ambiguity of this task. Wang et.al. [34] propose a two-stage

framework to facilitate the 3D pose estimation problem. A

depth ranking algorithm is involved to fully utilize 2D and

3D key-point information within images. Pavllo et.al. [27]

extends single-frame pose estimation to a video sequence,

which effectively utilizes the temporal information and also

could be trained in a semi-supervised way.

Weakly Supervised pose estimation. The acquisition

of 3D key-point annotations is generally high cost, which

motivates researches towards weakly supervised 3D pose

estimation. Brau et.al. [1] proposes a deep model involv-

ing an additional output layer that maps predicted 3D key-

points onto 2D image plane and body part lengths in 3D

space is constrained to match with a prior distribution from

dataset. Geometry-aware representation is proposed by

Chen et.al. [5] to learn the 3D key-point relationship in a

weakly-supervised manner. Li et.al. [20] utilizes the statis-

tic property of 3D poses, which should be low rank and tem-

porally smooth, to optimize the 3D trajectory of video se-

quences. Predicted results are treated as pseudo-annotations

to achieve a more robust 3D pose training procedure. Fang

et.al. [9] propose a so-called pose grammar framework,

which explicitly leverages a set of domain information in

terms of human body structure (i.e., kinematics, symmetry,

motor coordination) As important prior knowledge, the geo-

metric configuration of the human subject is further utilized

in the work of Zhou et.al. [40] to combine spatial-temporal

information to model the 3D geometry and account for the

ambiguities resulting from the pose estimation model. Yang

et.al. [38] shows that adversarial training is an effective tool

to facilitate realistic 3D pose estimation. Boosted by the

discriminator, predicted 3D poses should be visually natu-

ral and valid, i.e., following the human skeleton topology.

Unsupervised pose estimation. In contrast to fully

supervised and weakly supervised pose estimation, unsu-

pervised setting does not allow usage of any ground truth

3D pose information or relevant projection, which is much

more challenging. Rhodin et.al. [29] firstly propose to learn

a geometry-aware skeleton structure constructed via multi-

view images and without any 3D labels. The image view-

point along with 3D geometry information is predicted to

facilitate the unsupervised location of 3D key-points. The

multi-view information is an effective guidance signal for

learning geometry-aware representation. Another work [3]

bypasses the reliance of multi-view inputs and supervision

signal is provided by rotation consistency in the 3D space.

Further boosted by the generative adversarial training incor-

porated on the recovered 2D joints, the predicted 3D key-

points are indirectly optimized to be more realistic and ac-

curate. Kundu et.al. [17] estimate 3D skeletons relying on

3D real skeleton

3D possible skeleton

2D skeleton

camera

2D plane

Figure 2: Examples of predicted results caused by scale am-

biguity. Red and green 3D skeletons represent the estimated

3D skeletons with different scales.

a minimal set of prior knowledge that defines the underly-

ing kinematic 3D structure, such as skeletal joint connectiv-

ity information with bone-length ratios in a fixed canonical

scale. Kim et.al. [15] propose to learn the 2D key-points in

an unsupervised way via background/foreground disentan-

gling, which is theoretically extensible to an arbitrary ob-

ject. Similarly, based on background / foreground disentan-

gling, [17] utilize encoder and decoder module by paired

2D images in a self-supervised manner.

3. Methods

In this section, we propose a unified temporal frame-

work to effectively lift a 2D pose to the 3D skeleton, where

the temporal scale consistency and multi-view motion con-

sistency are combined into a pose estimation model. The

overall framework is illustrated in Fig. 1, where the pro-

posed model consists of two main parts, i.e., scale estima-

tion module and pose lifting module. Given a monocular

video sequence with a length of T time stamps, we first ap-

ply a pre-trained 2D pose detector (e.g., CPN [6]) to obtain

crude 2D joints as initial inputs. Then the scale estimation

module is used to optimize the scale of crude 2D pose. After

that, we estimate the 3D skeletons with the refined 2D poses

through the pose lifting module. More detailed descriptions

are given as follows.

3.1. Optimizing 2D Pose via Scale Estimation

We denote initial 2D pose as J2D = {(xi, yi)}
N
i=1, and

the corresponding 3D pose for each 2D joint can be repre-

sented as J
3D = {(Xi, Yi, Zi)}

N
i=1. Here N indicates the

number of joints for single person, and i refers to the ith
joint. For a video sequence, the 2D and 3D coordinates of

the ith joint at time stamp t are denoted as J2D
i,t and J

3D
i,t re-

spectively. For each time stamp, projected 2D joints and 3D

joints should obey perspective projection [36] as follows:

xi =
Xi

Zi

fx + cx, yi =
Yi

Zi

fy + cy, (1)
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where f = [fx, fy] and c = [cx, cy] are focal length and

point respectively. Note that Zi = D + di, where D indi-

cates the absolute depth of the root joint of the person and

di is the depth offset of ith joint relative to the root joint.

Limitation: Scale ambiguity. Previous unsupervised

3D pose estimation [29, 3, 12, 17] can not effectively esti-

mate the size of the output 3D skeletons J3D due to the lack

of 3D annotations. As illustrated in Fig. 2, without 3D su-

pervision, we can not obtain the absolute depth of the per-

son in the camera coordinate, which results in ambiguous

scale when lifting 2D pose to 3D pose.

Solution: Scale estimation via temporal constraint.

Following [3], we assume a camera with unit focal length

centered at the origin (0, 0, 0) and fix the distance of the

skeleton to the camera to a constant D units and normalize

the 2D joints such that the mean distance from the head

joint to the root joint is
1

D
units in 2D. This ensures that 3D

skeleton will be generated with a scale of ≈ 1 unit (head

to root joint distance). Since D ≫ di and Zi = D + di,
we have Zi ≈ D, where the prospective projection can be

approximated as follows:

xi =
Xi

D
· fx. (2)

We can see that xi is proportional to Xi (i.e., xi ∼ Xi).

Scale estimation module is firstly utilized to infer the scale

of 3D pose S3D, i.e., xi = S3D ·Xi. It can be alternatively

written as S2D ·xi = Xi, where S2D is the scale of 2D pose.

We can see that limiting the scale of 3D pose or optimizing

the scale of 2D pose S2D has the similar effect on this task,

and we experimentally find better results if estimating the

scale of 2D pose.

If 3D poses are given, we are able to calculate the scale

of the projected 2D joints (Sref
2D ) according to Eqn. 1 as

follows:

Sref
2D =

1

2
[
H({Xi/Zi}

N
i=1)

H({xi}Ni=1
)

+
H({Yi/Zi}

N
i=1)

H({yi}Ni=1
)

], (3)

where H(x) = max(x)−min(x). And max(·) and min(·)
operation mean the maximum and minimum value of cor-

responding 2D joints. We experimentally find considerable

improvement if feeding in Sref
2D as input, which drives us to

capture the underlying value of Sref
2D (modelled with S2D)

with the temporal cues in a supervised manner.

Sref
2D of different video sequences has been shown in

Fig. 3(A / B). However, We can see that the value of Sref
2D

fluctuates across the specific value in the whole video irreg-

ularly. And two curves of corresponding video sequences in

Fig. 3(A / B) have a different pattern. Thus it is highly diffi-

cult to learn S2D only using monocular information without

the supervision of Sref
2D . We are thus motivated to utilize the

temporal information to learn the variation of Sref
2D .
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Figure 3: Analysis on the scale of the projected 2D joints

(Sref
2D ). A/B corresponds to Sref

2D from two different video

sequences. C/D indicates two corresponding frequency

histogram of Sref
2D .

Temporal Scale Consistency. Fig. 3(C and D) indicate

two distributions of frequency histogram of Sref
2D in differ-

ent video sequences. It can be seen that the distribution

of frequency histogram of Sref
2D is uni-modal, i.e., follow-

ing N (µ, σ). We thus model the distribution of S2D with

a parameterized gaussian distribution, i.e., N (µ̂, σ̂), where

µ̂ and σ̂ are learnable parameters. Our goal is to encour-

age the distribution of estimated S2D to approximate that of

Sref
2D . We use the Kullback-Leibler divergence to optimize

the learnable parameters µ̂ and σ̂ as follows:

Lkl = DKL(N (µ̂, σ̂)||N (µ, σ))

= log
σ

σ̂
+

σ̂2 + (µ− µ̂)2

2σ2
−

1

2
,

(4)

Lkl is able to constrain the distribution (i.e., mean and vari-

ance) of all sequences, but can not constrain the distribution

of each sequence, not to mention more detailed information

of single frame. To achieve more accurate results, we intro-

duce bone consistency loss B, which is defined as follows:

Lbone = ∥B(J3D
t )− B(J3D

t+l)∥
2, (5)

where B denotes the bone length of the 3D skeleton. J
3D
t

and J
3D
t+l represent estimated 3D poses at time stamp t and

t+ l.
In summary, the first part loss function (Temporal Scale

Consistency loss, Ltsc) can be represented as:

Ltsc = wklLkl + wboneLbone, (6)

where wkl and wbone are hyper-parameters. We would like

to emphasize that Lkl constrains the general range (i.e., dis-

tribution) of S2D, more accurate value at each time stamp

will be achieved with the second regularization term.
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3.2. Lifting Optimized 2D Pose to 3D Counterpart

2D-to-3D Pose Lifting Model. We adopt the work of

Chen et.al. [3] as the baseline model, which outputs 3D

poses as follows:

J
3D
i = (xiZi, yiZi, Zi), Zi = max(1, D + di). (7)

Specifically, we estimate the depth di for the ith joint and

obtain the final 3D poses through Eqn. 7. As shown in

Fig. 1, the 2D-to-3D pose lifting model contains two parts,

i.e., lifting network ΦG and discriminator ΦD. Compared

with [3], we further optimize the baseline model in terms of

adversarial loss, network architecture and training strategy.

Please refer to the supplementary materials for more details.

Limitation: Pose ambiguity. Lifting 2D poses to 3D

counterparts is inherently ambiguous [17]. Given a specific

2D pose, there might exist multiple reasonable 3D poses

matching with the 2D input. Li et.al. [17] indicate that

multi-view data is able to effectively alleviate such kind of

ambiguity. However, multi-camera equipment is not acces-

sible for monocular 3D pose estimation [12].

Solution: Multi-view Motion Constraint. To alleviate

pose ambiguity, we produce another (pseudo) view of 3D

trajectories via a geometric random rotation [5] scheme to

construct multi-view information. This process denoted by

V can be shown as follows:

J
R3D
t = V(J3D

t ) = R ∗
(

J
3D
t − J

3D
0,t

)

+ T, (8)

where T = [0, 0, D] is the translation vector and R is the

rotation matrix. As is illustrated in Fig. 1, JR2D
t can be ob-

tained by camera projection from J
R3D
t . Then J

R2D
t is sent

to lifting network ΦG to get J̃R3D
t . J̃

R3D
t is transformed

to J̃
3D
t by applying the inverse of rigid transformation V .

The 3D skeleton J̃
3D
t is finally projected to the 2D pose

J̃
2D
t . More details will be shown in supplementary mate-

rials. Generated multi-view motion is utilized to pursue a

unique 3D structure. Our goal is to keep the pose differ-

ence between two random frames from two different views

as close as possible.

Multi-view Motion Consistency. As shown in Fig. 1,

our approach takes two frames from one sequence as inputs

for training. We enforce the temporal consistency between

different views via the following loss Ltmc to refine the lift-

ing network,

Ltmc = ∥(J3D
t − J

3D
t+k)− (J̃3D

t − J̃
3D
t+k)∥

2, (9)

where J
3D
t and J

3D
t+k represent estimated 3D skeletons in

frame t and t + k. J̃
3D
t and J̃

3D
t+k mean transformed 3D

skeletons in frame t and t + k. Transformed 3D skeletons

can be seen via a camera from another view. Therefore, the

proposed temporal motion consistency loss Ltmc is formed

by cross-view motion constraint, which is to tackle the lift-

ing ambiguity to pursue a more reasonable 3D structure. In

summary, the second part loss function (Pose lifting loss,

Llifter) can be represented as :

Llifter = w2DL2D + w3DL3D + wadvLadv + wtmcLtmc,
(10)

where w2D, w3D, wadv and wtmc are hyper-parameters.

Formally, the loss function L2D, L3D and Ladv are defined

as:

L2D = ∥J2D
t − J̃

2D
t ∥2,L3D = ∥J3D

t − J̃
3D
t ∥2, (11)

min
θD

Ladv(ΦD) = E[ΦD(J2D
t )− 1]2 + E[ΦD(JR2D

t )]2,

(12)

min
θG,θS

Ladv(ΦG) = E[ΦD(JR2D
t )− 1]2, (13)

where θS and θG are the parameters of the scale estimation

module ΦS and the pose lifting module ΦG (as illustrated

in Fig. 1), and θD is the parameters of discriminator.

It is worth mentioning that Ltsc and Llifter constrain

two parts (i.e., scale estimation module and pose lifting

module) separately, which is split by 3D pose estimation.

Different from traditional loss constraints, these two losses

constrain above two parts respectively, which shows excel-

lent performance compared to traditional training strategy.

Note that [3] uses an extra temporal discriminator to

learn the temporal consistency, which is computational inef-

ficiency with marginal improvement. By contrast, the pro-

posed constraint only utilizes multi-view motion informa-

tion to learn temporal consistency instead of relying on dis-

criminator, which still achieves considerably better results.

3.3. Iterative Training Strategy

In this work, we split 3d pose estimation into two sub-

tasks by the scale estimation module and the pose lifting

module. In such serial design, the input of the pose lifting

module depends on the output of the scale estimation mod-

ule, which may suffer from large variance in input distri-

bution. Therefore, to stabilize the optimization process, we

train the scale estimation module and the pose lifting mod-

ule iteratively (e.g. we train the pose lifting module 4 times

and then train the scale estimation module once.) When

training the pose lifting module, we freeze the weights of

the scale estimation module, and vice versa. We empirically

find that such iterative practice is effective and the ablation

study can be found in Sec. 4.4.

3.4. Implementation Details

Our networks are generally shallow and can be trained

in an end-to-end manner efficiently. Following [23], we use

the residual block as the building block. Specifically, we
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use 5 blocks for the pose lifting module, 2 blocks for the

discriminator and 1 block for the scale estimation module.

Please refer to the supplementary materials for more details.

As in earlier discussion, the loss functions for optimiz-

ing the scale estimation module and the pose lifting mod-

ule are given by Ltsc and Llifter. where wkl = 0.001,

wbone = 1.0 w2D = 0.5, w3D = 5.0, wadv = 1.0
and wtmc = 1.0 respectively. For the KL prior, the pa-

rameters of target Gaussian distribution(µ, σ) need to be

predefined. We experiment with different pairs selected

from ranges (0.55, 0.75) and (0.05, 0.15) and choose a best

pair(µ ≈ 0.71, σ ≈ 0.06). As for other hyper-parameters,

we set constant depth D = 10, set the batch size to 1024 and

the learning rate of both lifter and discriminator to 0.0002

with decay rate of 0.95 per epoch. The dropout rate is set

to 0.25. We adopt Adam optimizer with default parameters

and train the whole network for 200 epochs.

4. Experiments

4.1. Datasets and Metrics

Human3.6M [11]. Human3.6M is one of the largest in-

door datasets with Mosh [21] available. We report mean

per-joint position error (MPJPE) and PMPJPE (MPJPE af-

ter rigid alignment).

MPI-INF-3DHP [24]. MPI-INF-3DHP is collected

both indoors and outdoors. In addition to PMPJPE, we

report the Percentage of Correct Keypoints (PCK) thresh-

olded at 150mm and the Area Under the Curve (AUC).

Surreal [32]. Surreal contains many video clips with

human characters of various shapes and poses.

LSP [13]. LSP consists of 2000 in-the-wild images

without ground-truth 3D annotation. We perform qualita-

tive evaluation to illustrate the generalization ability.

4.2. Quantitative Evaluation

Results on Human3.6M Dataset [11]. As illustrated in

Tab. 1, we report the unsupervised pose estimation results in

terms of MPJPE and PMPJPE. We show results from fully

supervised (Full), weakly supervised (Weak) and unsuper-

vised (Unsup) methods. Our method outperforms the state-

of-the-art unsupervised method (Kundu et.al. [16]) by a sig-

nificant margin (52.3 vs.62.4) in terms of PMPJPE. This is

mainly facilitated by multi-view motion consistency, which

provide more accuracy and reasonable pose. Moreover, our

method surpasses Rhodin et.al. [29] by 29.8 % in MPJPE,

which is possibly boosted by temporal scale consistency.

Notably, our method is comparable with several weakly su-

pervised approaches that explicitly use 3D data.

Results on MPI-INF-3DHP [24]. As shown in Tab. 2,

we present the pose estimation results in terms of PCK

and AUC. For more comprehensive comparison, we also

Mode Algorithm GT PRE

MPJPE PMPJPE MPJPE PMPJPE

Full

Martinez et al. [22] 45.5 37.1 62.9 47.7

Pavllo et al. [27] 37.2 27.2 46.8 36.5

Wang et al. [33] - - 42.6 32.7

Weak

3DInterpreter [35] - 88.6 - 98.4

AIGN [31] - 79.0 - 97.4

Drover et al. [8] - 38.2 - 64.6

Li et al. [20] - - 88.8 66.5

Unsup

Rhodin et.al.[29] - - 131.7 98.2

Chen et.al.[3] - 51.0 - 68.0

Kundu et al.[16] - - - 62.4

Kundu et al.[17] - - - 63.8

Ours 85.3 42.0 92.4 52.3

Table 1: Experimental results on the test set of Hu-

man3.6M [11]. For a more comprehensive comparison, we

list results from several kinds of supervision. GT and PRE

denote results using ground truth 2D pose and estimated 2D

pose by 2D detector, respectively.

report the performance of several recent fully-supervised

and weakly-supervised methods trained on various datasets.

Among these models trained on 3DHP [24] dataset, our

approach achieves higher accuracy than both unsupervised

and weakly-supervised methods. Similarly, among the

models trained on Human3.6M [11] dataset, our approach

outperforms all the unsupervised / weakly-supervised meth-

ods and is comparable with the performance of fully-

supervised models, which demonstrates the generalization

ability of our model. By explicitly incorporating temporal

scale consistency and multi-view motion consistency into

deep models, Ambiguity problems have been well allevi-

ated and output structure is more reasonable, which finally

leads to higher estimation accuracy.

4.3. Qualitative Evaluation

We present qualitative results on Human3.6M [11],

3DHP [24], Surreal [32] and LSP [13] datasets. Note that

to demonstrate the generalization ability of the proposed

model, the pose on LSP [13] dataset is estimated with the

model trained on Human3.6M [11] dataset. As illustrated

in Fig. 4, we visualize predicted skeletons (green) and the

ground truth (red) in the same coordinate system. Note that

scaling and rigid alignment are NOT performed. We can see

that the scale of 3D poses are well estimated (Fig. 4A,B,C)

on Human3.6M [11], 3DHP [24], and Surreal [32] datasets,

which is visually reasonable and mainly facilitated with the

temporal scale constraint. Moreover, the estimation results

on the unseen appearance (Fig. 4D) are still visually satisfy-

ing. The qualitative results have shown that scale ambiguity

and pose ambiguity are properly handled by our proposed

method. For comparison, we also provide more visual re-
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A. Results on H36M dataset (in-studio)

B. Results on 3DHP dataset (in-the-wild) 

C. Results on surreal dataset (synthetic)

D. Results on LSP dataset (in-the-wild)

Figure 4: Qualitative results on 4 different datasets. Top Left: predictions(red) along with ground truth(green) in Hu-

man3.6M [11]. Top Right: predicted predictions(red) along with ground truth(green) in 3DHP. Bottom Left: predicted

predictions(red) along with ground truth(green) in Surreal. Bottom Right: results without training on the corresponding

train-set.

Supervision Algorithm Trainset PCK AUC

Full

Mehta et al.[24] H36M 64.7 31.7

Mehta et al.[24] 3DHP 72.5 36.9

Yu et al.[7] H36M 84.1 -

Zeng et al.[39] H36M 77.6 43.8

Chen et al.[4] 3DHP 87.9 54.0

Wang et al.[33] 3DHP 86.9 62.1

Weak
Zhou et al.[24] H36M 69.2 32.5

Kanazawa et al.[14] 3DHP 77.1 40.7

Unsup

Chen et al.[3] H36M 64.3 31.6

Chen et al.[3] 3DHP 71.1 36.3

Kundu et al.[16] YTube+H36M 84.6 60.8

Kundu et al.[17] H36M+3DHP 80.2 44.8

Ours H36M 82.2 46.6

Ours 3DHP 86.2 51.7

Table 2: Experimental results on the test set of MPI-INF-

3DHP [24]. When Trainset is h36m, we simply use pre-

trained model on Human3.6M [11] to evaluate on MPI-INF-

3DHP [24] without any fine-tuning.

sults of estimated poses with and without scale module re-

spectively. Please refer to the supplementary material.

4.4. Ablation Study

Analysis on loss configuration and supervision sig-

nals. In Tab. 3 we report the performance under different

loss configurations on the Human3.6M [11] data. With-

out access to the source code, we re-implement the base-

line model [3]. Experimental results show that our imple-

mentation is much better than the original one in [3]. We

present the differences in detail in supplementary material

and please also refer to the released code. Specifically, by

simply exploiting geometric information and utilizing dis-

criminator to prevent irrational poses, we achieved satis-

fying results. Furthermore, based on the baseline, we can

Loss Function MPJPE PMPJPE

L2D+L3D+Ladv in [3] - 58.0

L2D+L3D+Ladv 105.0 46.0

L2D+L3D+Ladv+Ltmc 101.7 43.5

L2D+L3D+Ladv+Ltmc+Lkl 96.0 42.9

L2D+L3D+Ladv+Ltmc+Lkl +Lbone 85.3 42.0

Table 3: The analysis on different loss configurations. Per-

formance is evaluated on test set of Human3.6M [11] and

we use GT 2d as the input. We re-implement the baseline

according to [3] and list the differences in supplementary

material in detail.

Ablation study on scale estimation MPJPE PMPJPE

*Reference scale as inputs 72.3 39.7

2D Normalization Scale Module MPJPE PMPJPE

None None 260.7 57.8

None On 2D 233.4 55.0

Universal scale None 105.0 46.0

Step-wise scale None 94.5 48.5

Universal scale On 3D 97.5 43.6

Universal scale On 2D 85.3 42.0

Table 4: The analysis on methods to address scale ambigu-

ity. * can be viewed as the ceiling performance of our de-

sign. Universal scale normalization indicates we normalise

all 2D skeletons with a same constant. Step-wise scale in-

dicates we normalise each 2D skeleton independently. We

evaluate the performance on test set of Human3.6M [11].

observe that adding temporal motion consistency Ltmc can

boost the performance by about 6%, proving the effective-

ness of the temporal constraint in our model. Then we per-
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Figure 5: Illustration of scales and scale predictions. sref
2D

(green line) denotes target scales computed manually. sb
(yellow line) denotes using only Lbone during training. sb+c

(red line) denotes Lbone with iterative training. sb+k+c

(blue line) denotes Lbone + Lkl with iterative training.

form ablation studies on the scale estimation module. We

observe that applying Lkl prior alone leads to a slight drop

≈ 1.3% in PMPJPE. This is because Lkl is a relatively

weak constraint, which only constrains the range of esti-

mated scales instead of pose accuracy. Besides, in terms

of MPJPE, the scale estimation module brings about 16.1%
improvement compared with the baseline.

Finally, we visualize the scale information predicted by

different components of the proposed method in Fig. 6. It

can be easily seen that sb (yellow line) is closed to a con-

stant value 1, which means little scale information can be

learned only relying on Lbone. sb+i (red line) has ob-

vious fluctuations, proving the effectiveness of the itera-

tive training strategy. The predicted scale sb+k+i based on

Lbone + Lkl with iterative training is highly close to sref
2D ,

which is computed by 3D information. Note that we learn

the scale information without the supervision of sref
2D during

the training procedure. The excellent results show that our

method is able to learn the scale information well.

Analysis on methods to address scale ambiguity. As

shown in Tab. 4, we first feed reference scales (calculated

with ground truth) as inputs and evaluate on the test set of

Human3.6M [11], which can be seen as the upper-bound

performance of our framework (the first row). Then, with-

out any pre-processing procedure, we report the perfor-

mance with and without scale module. We can observe that

scale module can boost the performance still, proving the

effectiveness of our design. Then we experiment with some

other pre-processing techniques. A simple alternative solu-

tion is to use step-size scale in normalization(i.e. normalise

the head-root distance of all skeletons to 1/D). Step-wise

scale leads to a drop in PMPJPE and we speculate the rea-

son is that information about the real inputs distribution can

not be preserved. In contrast, using scale module to ad-

dress this problem is much more effective. Finally, we try

to multiply scales directly on 3d outputs of the pose lifting

module, which does not work as well as on 2d counterparts.

Iteration Number of the Lifting Module

E
rr

o
r

without iteration training

without iteration training

MPJPE

PMPJPE

30
2 3 4 5 6

40

50

60

70

80

90

100

110

Figure 6: Illustration of the effects of training strategy on

model performance. Iteration numbers of the lifting module

indicate how many times we train the lifting module when

scale module is trained once. We show MPJPE, PMPJPE

w.r.t. different ratios, as well as in setting without iterative

training, which is shown in dash lines.

Analysis on training strategy. Intuitively, scales will

dramatically affect the distribution of the input 2d joints

of the lifting module, so it is important to employ train-

ing methods properly, otherwise, the training will be quite

unstable. As is illustrated in Fig. 6, we compare different

training methods and report their performance. When we

remove iterative training, we simply combine Eqn. 10 and

Eqn. 6, optimizing scale estimation module and pose lift-

ing module together. We experiment with several ratios in

iterative training and empirically choose the best one.

5. Conclusions

In this paper, our method splits unsupervised monocu-

lar 3D pose estimation into two sub-tasks, scale estima-

tion module and pose lifting module. Both two modules

are optimized via an iterative training scheme with the cor-

responding temporal constraints. Extensive experiments

show that our model achieves state-of-the-art performance

on related human pose estimation datasets.
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